
Reveal - Code Section 1

Project Reveal
APPENDIX: ANDROID CODE SNIPPETS

Martyn Williams and Niklaus Schiess

Reveal - Code Section 2

APPENDIX:
ANDROID CODE SNIPPETS
The following appendix includes snippets of code from analyzed North Korean
devices.

MIRAE WI-FI

The different authentication steps are implemented in the SmartCardService.
apk app. It also implements communication with the SIM card to ready crypto
material. Some other phones nowadays also seem to have such apps installed in
case communication with SIM cards is required. One example are banking apps that
install services on SIM cards. Therefore, the implementation of SmartCardService.
apk is most likely similar to these apps.

The Taeyang Smart Card Service is implemented in two parts:

•	 kut.it3.SmartCardService: The Java interface within the app. 1

•	 libSIA.so: A native library that implements communication with SIM cards
and all required cryptographic functions.

The service is started in the BootCompletedBroadcastReceiver (kut.it3.
SmartCardService.BootCompletedBroadcastReceiver) in the onReceive()
function as shown in the following snippet:

public void onReceive(Context var1_1, Intent var2_2) {

	 if (var2_2.getAction().equals(“android.intent.action.BOOT_COMPLETED”)) {

		 Log.i(“SmartCardService”, “Starting SmartCard service after boot completed”);

		 var1_1.startService(new Intent(var1_1, SimCardService.class));

	 SimCardService.start(var1_1);

		 [...]

}

The service then runs in the background and monitors if SIM cards are plugged into
the device.

The user interface just provides a button that allows you to get the authentication
status. When clicking the button, the SimCardManager.getSimAuthStatus()
function from the native library libSIA.so is called:

•	 Java_kut_it3_SmartCardService_SimCardManager_getSimAuthStatus()

This is the only JNI function that is exported by libSIA.so.

1 “kut” is commonly used in North Korea as an acronym for Kim Chaek University of
Technology

Reveal - Code Section 3

The key material is loaded via a function getMEKeys() (getSimAuthStatus() ->
smartcard_init() -> getMEKeys()). The actual data is located in the following
files:

•	 /system/etc/ma_cert.dat
•	 /system/etc/ma_priv.dat

Both are then decrypted with the same key in the encKey array (88 bytes), which
is also exported. Decryption is just simple XOR for both the certificate and the
private key. The key is a ECDSA private key that is used to check signatures. The
Certificate Authority (CA) private and public keys are also hardcoded in the library.

The code includes references to the following supported curves:

•	 aNistX962SecgCu - NIST/X9.62/SECG curve over a 192 bit prime field
•	 aNistSecgCurve0 - NIST/SECG curve over a 224 bit prime field
•	 aX962SecgCurveO - X9.62/SECG curve over a 256 bit prime field

The actual signatures are 256 bit long. They sign the data that is returned from the
SIM card via the GET_CHALLENGE()function. The resulting signature is then used
in a challenge response authentication mechanism that checks if the SIM card and
device are both authorized to be used for the Mirae WiFi.

SETTINGS.APK

In order to implement the features of the Mirae WiFi, a lot of changes have been
introduced to the Settings app.

The following list includes some examples of features that have been removed:
•	 auto_rotate
•	 System update
•	 Send feedback
•	 Debugging menu via build number
•	 Settings search
•	 Network settings
•	 tether_settings
•	 vpn_settings
•	 forceScan() in WifiTracker
•	 android.intent.extra.ringtone.SHOW_MORE_RINGTONES intent in

DefaultRingtonePreference.java (prevents changing the ringtone)
•	 Baseband versions
•	 Hides the actual battery power usage
•	 Wifi network notification
•	 Advanced Wifi settings

The changes to the settings app are not only limited to features for the Mirae
WiFi. There are also many changes to remove standard features like changing USB
modes or access to the debug menu.

Reveal - Code Section 4

The following sections will describe various changes that added, removed or
changed features in the Settings app.

USBMODECHOOSERACTIVITY.JAVA

•	 Removes USB Modes:
°	 Stock image: DEFAULT_MODES = new int[] { 0, 1, 2, 4, 6, 8,

10 };
°	 Taeyang: DEFAULT_MODES = new int[] { 0, 1, 2, 10 };

CHANGES TO DASHBOARDSUMMARY.JAVA

•	 A lot of changes here compared to the stock image Settings.apk.
•	 Implements isIccCardReady() function which checks if TelephonyManager.

getDefault().getSimState(...) returns either 0 or 1.
•	 Registers a BroadcastReceiver() for the android.intent.action.SIM_

STATE_CHANGED intent and calls isIccCardReady() when it’s received.
•	 rebuildUI() adds an additional check for Wifi:

°	 wifiEnabled = this.isIccCardReady() && !WirelessUtils.
isAirplaneModeOn((Context)this.getActivity());

°	 At the end, it will enable or disable Wifi based on this check.

ADDITIONS TO THE SETTINGS APP

The Settings app adds Identifier.java that does not exist in the stock Android
Settings app. It is an interface that loads the native library libidentify.so which
implements the following JNI function:

•	 Java_com_android_settings_deviceinfo_Identifier_getId()

This calls the internal function get_devid() with the first three arguments:

•	 Build.SERIAL
•	 IMEI (returned from getDeviceId()2)
•	 ro.com.product from build.prop (code calls: /system/bin/getprop

ro.com.product)
° Example from Taeyang 8321: “ro.com.product=1288321”

The result is an ID for the given device that is unique.

STATUS.JAVA

•	 Various changes regarding SIM status
•	 Checks if multiple SIM cards are available (isMultiSIM)
•	 Adds a function that displays the IMEI:

2 https://developer.android.com/reference/android/telephony/TelephonyManager#get-
DeviceId()	

Reveal - Code Section 5

private void setPreferenceValue(final int n) {

final Phone phone = PhoneFactory.getPhone(n);

if (phone != null) {

		 	 this.setSummaryText(“imei”,

	 phone.getImei());

			 this.setSummaryText(“imei_sv”,

	 phone.getDeviceSvn());

			 }

		 }

WIFICONFIGCONTROLLER.JAVA

The most relevant changes for the Mirae WiFi access are implemented here.

The most relevant is the following line that hardcodes the WiFI SSID:

•	 this.mSsidView.setText((CharSequence)”PYY1026MIRAE00007”)

•	
This is the name of the Mirae WiFi which would be visible to clients in the range
of it (if the SSID is not hidden). Furthermore, the authentication methods are
restricted to EAP with SIM as the EAP method. This is also hardcoded in the
application, the device users have no option to change any of this.

Additionally, various views have been removed from the WifiConfigController:

•	 com.android.settings:id/security_text
•	 com.android.settings:id/security
•	 com.android.settings:id/security_wfa
•	 com.android.settings:id/wpa_security
•	 com.android.settings:id/wpa_security_wfa
•	 com.android.settings:id/wapi_security
•	 com.android.settings:id/wifi_advanced_toggle

Generally, the changes remove a lot of features that would allow users to use
the devices on other networks or to communicate with other devices over,
e.g., USB. It also tries to hide technical information like the WiFi SSID by just
removing the views from the Settings app. This makes it especially hard to
figure out how the Mirae WiFi works for a casual user of the devices, who are
not able to root and access the device.

SIGNATURE SYSTEM CORE

This section describes the inner workings of the signature system and covers
aspects of the actual implementation in the native libraries that are utilized by
all apps that do signature checks.

Reveal - Code Section 6

The signatures used by this system are cryptographic signatures implemented with
asymmetric encryption. These are generally implemented with the RSA algorithm,
although the devices also use ECDSA for other tasks (see section Mirae WiFi
Access).

Describing the inner workings of these algorithms is not in the scope of this
document. However, the basic principle is that asymmetric encryption uses keypairs,
where the public part is used to encrypt data and only the private part can decrypt
it. In the case of signatures, almost the opposite: private keys create signatures
and public keys can be used to verify them. This is relevant to understand the key
material that is required on devices to create or just validate signatures.

The signature system supports two types of signatures that are each used for a
specific purpose. The main difference is the handling of the private and public keys.

Government Signatures (Type 1)
Also referred to as NATISIGN or “nation signatures”, are basically just signatures
that are created by a government institution and then added to media files. The
devices only have the public part of the keypair to validate those signatures.
The intent is to allow the government to approve media files so that they can be
consumed on tablet PCs and smartphones. This is especially useful for devices
that can access the internal network and download documents or media files from
official government servers.

Another use case is to control what apps can be installed on these government
approved devices. These signatures are required for APK files, so that only
government approved apps can be installed.

Self Signatures (Type 2)
When thinking about controlling media on such devices NATISIGN is the go-to
signature you would want to have. It gives the government full control of media
files and apps that are compatible with these devices. However, the devices are
also capable of creating their own media files. Typically, they come with apps like
an office suite, notepad, a camera and a microphone, so writing documents or
taking pictures/videos must also be possible. For this use-case the SELFSIGN or
“self-signatures” have been implemented.

Each device has an RSA keypair which is used to create signatures for files created
on this very device. For example, if you take a picture with the internal camera,
the camera app will take care of appending a SELFSIGN signature to the image
on the file system transparently. You as a user won’t be able to recognize that this
signature exists. Only if you try to open files that do not have a valid signature, an
error message will be displayed.

Reveal - Code Section 7

The key comes preinstalled on the device and is most likely not unique for specific
devices (see section Signature System Bypassing Software). But the signature
actually includes the IMEI and occasionally the IMSI (depending on the device) to
ensure that the signature is only valid for a specific device. The signature can also
include multiple device identifiers, to make them accessible on multiple devices.
However, one would have to extract the private keys from one of these devices to
create valid signatures.

Both types of signatures are handled the same when it comes to adding them to
files and parsing them. The signatures are just appended to the files, without any
special logic that cares about the file type. The type of the signature is appended at
the very end in the form of an ASCII string, which is either NATISIGN or SELFSIGN.
When verifying the signature of a media file the code basically just seeks to the
end of the file and reads the last eight bytes. Based on this data it then decides if
it should be handled as a NATISIGN or SELFSIGN signature. In case none of the two
strings is there, it assumes the file has not been signed yet. The part where the two
signatures are then handled is described in the following sections.

LIBMEDIANATSIGN.SO
This is where the NATISIGN signatures are implemented. This section contains
some brief implementation details.

DESCRAMBLE_ANDROID()
•	 Function which decrypts input buffers with a XOR function in bit _
descramble().

CHECKPATTERN()
• Reads /data/legal/sig/pattern.dat
• Reads 24 bytes at a time

GETKEYFROMNV()
	 • Reads key from given filename from the path /data/legal/sig/.

LIBMEDIASELFSIGN.SO
This is where the SELFSIGN signatures are implemented.
	 • The key used for selfsigning is read from: /data/legal/sig/selfsignkey.dat
	 • Reads 1424 byte, but only copies 272 into ns_SIgnKeyBuf2:
		 ° v12 = MSSGetSignKey(ns_SignKeyBuf, 1424,
		 ns_SignKeyBuf2, 272u);
	 • According to the symbols, the following well known crypto is used:
		 ° RSA2048
		 ° SHA256
		 ° Rijndael256
	 • Have these algorithms been modified?
		 ° Sboxes of Rijndael?
		 ° Constants of SHA256?
	 • The encrypted part of signatures is 520 byte
	 • 16 bytes at the end are

Reveal - Code Section 8

		 ° 4 byte length
		 ° 4 NULL bytes
		 ° 8 bytes “SELFSIGN” string

LIBMEDIAEXT.SO
This is a simple library that implements mime type checks for media files. It provides
two JNI functions:

	 • isFileExt(): Check if a given file’s mime type is allowed
	 • saveExtFile(): Add additional mime types to the database

The implementation is very simple. It just reads the first 16 bytes of a given file and
checks if these 16 bytes are present in the database stored at /data/legal/sig/
ext.dat. The file just contains a list of 16 byte strings with no particular format. The
following screenshot shows the contents of the default database file:

Each line represents a mime type, starting with Zip, AVI3 and so on. The majority
are media related mime types like video and audio files.

This is the only check that this library provides. There is no check for file extensions.

3 https://en.wikipedia.org/wiki/Audio_Video_Interleave

Reveal - Code Section 9

TECHNICAL SCOPE OF DEVICES AND LIBRARIES

This section describes the analysis that has been done during the project and
discusses some of the technical similarities and differences between the devices.
This information helps to create a baseline to compare different hardware and
understand how changes in software and firmware relate to one another.

The following sections describe the devices and software libraries that were
available during the analysis. The analysis was conducted on the device dumps that
were available, which does not necessarily require access to the physical device.

With a few exceptions, dumps were created for all physically available devices.

AVAILABLE DEVICES

The following list contains all devices where full device dumps are available.

Smartphones:
•	 AP121
•	 Pyongyang 2406
•	 Pyongyang 2407

Tablet PCs:
•	 Taeyang 8321
•	 Woolim
•	 Ryongaksan

The AP121 smartphone and all the tablet PCs listed above are also physically
available.

Currently, there are two exceptions for devices that are physically available, but we
have no full dumps (yet):

•	 “Achim” tablet from 2017
•	 Pyongyang 2425 (still work in progress)

For these devices no deeper analysis has been performed so far. However, the
Achim tablet shares various properties with the Woolim and Ryongaksan tablets.
Also the Pyongyang 2425 phone is comparable to the Taeyang tablet PC, as it
basically shares a similar platform. But it has a newer Android version that has not
yet been analyzed on any North Korean smartphone.

RELEVANT DEVICE PROPERTIES

For the sake of simplicity, we are comparing the devices by some software related
properties that are relevant for the signature system and other custom features.
These are:

•	 Build dates of the devices
•	 Release dates of devices (in case these are available/known)
•	 Android version
•	 Kernel version
•	 Platform

Reveal - Code Section 10

The following table shows these properties for the devices in scope.

Device Build Date Android Kernel Platform

AP121 Thu Dec 25
18:09:48
KST 2014

4.2.1 - MT6589

Pyongyang 2406 Wed Jul 23
18:17:20
CST 2014

4.2.2 - MT6572

Pyongyang 2407 Mon Dec 29
12:38:55
CST 2014

4.2.2 3.4.5 MT6582

Taeyang
(대양) 8321

Jul 28
16:13:34
KST 2018

6
(security patch:
2016-09-05)

3.18.19
(15-01-2018)

MT6580

Woolim Thu Sep 10
18:26:32
EDT 2015

4.4.2 3.4.39 A33

Ryongaksan
(룡악산)

2017.08.03
15:28:05 KST

4.4.2 3.4.39 A33

KERNEL INFO

The following table shows more comprehensive information about the kernel
version and build properties of device dumps where this was available. It gives
some basic information about the hostname it was built on, software versions that
were used and the build date of the kernel. These are brief indicators for when the
devices have been built and when the software has been installed/updated last.

This table only includes the devices where the information was accessible on the
device dump. Other devices did not include the full information on the device dump.

Device Kernel Info

Pyongyang 2407 Kernel: Linux version 3.4.5 (znsj@znsj-soft01) (gcc version
4.6.x-google 20120106 (prerelease) (GCC)) #1 SMP PREEMPT
Mon Dec 29 12:37:11 CST 2014

Woolim Linux version 3.4.39 (root@rainbow-SUN-SERVER-X4-2)
(gcc version 4.6.3 20120201 (prerelease) (crosstool-NG lin-
aro-1.13.1-2012.02-20120222 - Linaro GCC 2012.02)) #1 SMP
PREEMPT Wed Nov 4 05:59:45 EST 2015

Reveal - Code Section 11

Device Kernel Info

Woolim Kernel: Linux version 3.4.39 (jml@jml) (gcc ver-
sion 4.6.3 20120201 (prerelease) (crosstool-NG lina-
ro-1.13.1-2012.02-20120222 - Linaro GCC 2012.02)) #709 SMP
PREEMPT Wed Aug 2 15:16:38 CST 2017

BUILD PROPERTIES

The following table shows properties from the build.prop4 file of each device.
These include information about when the Android image has been built, the base
image that has been used to build it, the build system and the architecture version
of the device. The build dates and base images are interesting, as it allows us to
determine when the device has been finalized by the North Korean developers and
the base images that they used.

The build description and fingerprint contains information that can allow you to
identify the actual base image and search for it online. This has been done for the
Taeyang tablet and the corresponding stock image was available for download.

Device Properties

AP121 ro.build.date=Thu Dec 25 18:09:48 KST 2014

ro.build.description=bird89_wet_a_jb2-user 4.2.1 JOP40D
eng.ubuntu-61.1419498478 test-keys

ro.build.fingerprint=KPTCBS/bird89_wet_a_jb2/bird89_
wet_a_jb2:4.2.1/JOP40D/1419498478:user/test-keys

ro.mediatek.version.branch=ALPS.JB2.MP.V1.2

Pyongyang 2406 ro.build.date=Wed Jul 23 18:17:20 CST 2014

ro.build.description=gionee72_wet_jb3-eng 4.2.2 JDQ39
eng.android.1406110529 test-keys

ro.build.fingerprint=alps/gionee72_wet_jb3/gionee72_wet_
jb3:4.2.2/JDQ39/1406110529:eng/test-keys

ro.mediatek.version.release=ALPS.JB3.MP.V1

4 https://www.droidwiki.org/wiki/Build.prop

Reveal - Code Section 12

Pyongyang 2407 ro.build.date=Mon Dec 29 12:38:55 CST 2014

ro.build.description=gionee82_wet_jb5-eng 4.2.2 JDQ39
eng.znsj.1419827849 test-keys

ro.build.fingerprint=alps/gionee82_wet_jb5/gionee82_wet_
jb5:4.2.2/JDQ39/1419827849:eng/test-keys

ro.mediatek.version.release=ALPS.JB5.MP.V1.6

Taeyang 8321 ro.build.date=Sat Jul 28 16:13:34 KST 2018

ro.build.description=full_along8321_tb_m_706m-user 6.0
MRA58K 1532760902 test-keys

ro.build.fingerprint=alps/full_along8321_tb_m_706m/
along83
21_tb_m_706m:6.0/MRA58K/1532760902:user/test-keys

ro.mediatek.version.release=alps-mp-m0.mp1-V2.52_
along8321.tb.m_P33

Woolim ro.build.date=Thu Sep 10 18:26:32 EDT 2015

ro.build.description=ulrim_pic-eng 4.4.2 KVT49L eng.
root.20150910.181849 dev-keys

ro.build.fingerprint=PIC/ulrim_pic/ulrim_pic:4.4.2/KVT49L/
eng.root.20150910.181849:eng/dev-keys

Ryongaksan ro.build.date=2017.08.03 15:28:05 KST

ro.build.description=astar_y3-eng 4.4.2 KVT49L 20170803
test-keys

ro.build.fingerprint=Allwinner/astar_y3/astar-y3:4.4.2/
KVT49L/20170803:eng/test-keys

AVAILABLE VERSIONS OF THE SIGNATURE SYSTEM

The following table shows all the available libraries and SHA256 sums of the available
device dumps. It allows one to identify which devices use the exact same versions/
files of the signature system. Identical sums mean there are no differences at all.

Reveal - Code Section 13

Device Library SHA256

pyp_2406/libmediaselfsign.so 5ce3bbd3c0c16b7e3c1b70f7dd5d0e278a3c
abe4f5c248ec7f61be893306894

pyp_2406/libmediaselfsign.so 8bbb5f92d9c2efa10db7db056a5c10249621
35ed42574d1ba3aa976455083eeb

pyp_2407/libmedianatsign.so 5ce3bbd3c0c16b7e3c1b70f7dd5d0e278a3c
abe4f5c248ec7f61be893306894a

pyp_2407/libmedianatsign.so 8bbb5f92d9c2efa10db7db056a5c10249621
35ed42574d1ba3aa976455083eeb

taeyang_8321/libmediaselfsign.so 8715e0686c6d669dc44e62e3fe819b5157a7
3e300d0dd986e282c7bdfc500b5f

taeyang_8321/libmediaselfsign.so 7c6950f368cc352ff7e7df29c7092103ddbde
54a1add0b73c573e43432004923

woolim/libmediaselfsign.so 344782301025b3d8806f8ee882f4a312222f
24a984dd665168e969efb8864a5f

woolim/libmediaselfsign.so 3b5df463bb07cb3da53f26d8d18c3650f76a
8ea76b0af02c5009d7610374abfb

Reveal - Code Section 14

ryongaksan/libmedianatsign.so 344782301025b3d8806f8ee882f4a312222f
24a984dd665168e969efb8864a5f

ryongaksan/libmediaselfsign.so 3b5df463bb07cb3da53f26d8d18c3650f76a
8ea76b0af02c5009d7610374abfb

ap121/libmedianatsign.so 344782301025b3d8806f8ee882f4a312222f
24a984dd665168e969efb8864a5f

ap121/libmediaselfsign.so 2ff1c9d3e6cb5ecb72b16b1f056dd828f52e0
02ced3812c0b5bd8396ecea21da

Just from the identical hashs we can conclude several interesting points:

PYONGYANG 2406 & 2407 USE THE EXACT SAME SIGNATURE SYSTEM

This is expected, as those phones are also built in the same year by the same
manufacturer. Depending on the actual release date, most of the device modifications
should be similar on both devices.

SIMILARITIES WITH STOCK IMAGES

One step of trying to identify modifications by North Korean developers was to
diff device dumps with stock images. These were searched on the Internet with
information extracted from the devices, especially from the build.prop files.

This section describes the process of how the dump of the Taeyang 8321 device
has been compared to the following stock image we have found for the device:

•	 MT6580__alps__Nomi_C070010__elink8321_tb_m__6.0__alps-mp-m0.
mp1-V2.52_elink8321.tb.m_P10.rar

There are various things we could learn from this analysis step:

Added Apps
Added apps are the most interesting ones as these are potentially developed by
North Korean developers. We have identified that most of the added apps are
actually self-developed. The following table shows the apps have been added to
the device:

Reveal - Code Section 15

Name Category Description

AdobeReader PDF reader Implements signature checks in
opened PDF files.

CM_Lite

KoreaIME_Star Custom App

LiveWallpaper1 System App

LiveWallpaper2 System App

LiveWallpaper3 System App

LiveWallpaper4 System App

LiveWallpaper5 System App

LiveWallpaper6 System App

NotesPad Custom App

OceanKingOffice12 Custom App Office suite with implemented
signature checks.

Pinyin_IME_v3_2_0 Custom App

Provision System App

webview System App

Ocean_Launcher_V02_
NoApp_Q8H

Custom App

OneTimeInitializer System App

PackageInstaller System App

RedFlag Custom App The core of the signature system.

SmartCardService Custom App Implementation for accessing
Mirae WiFi.

TraceViewer Custom App Frontend for functionality of
RedFlag app.

Modified Apps
There are multiple reasons why apps have been modified. Some have simply been
translated to Korean (e.g. Angry Birds5), including text in the apps but also images
that contain text. It is assumed that these are popular apps that the developers
wanted to make accessible on these devices but weren’t available in Korean.

5 https://en.wikipedia.org/wiki/Angry_Birds

Reveal - Code Section 16

Another reason for modifying apps is to add compatibility with the signature
system and other custom features of the North Korean devices. These include e.g.
signature checks for media files in the browser app or the Adobe PDF reader app.

The following list shows the apps that have been modified. However, no further
classification of the actual modifications has been done:

Name Category Description

Bluetooth System App Implements signature checks for files
that are shared via Bluetooth.

Excludes signature checks for vCard
files (.vcf or .vcs extensions).

Camera System App Implements adding signatures to image
and video files.

FileManager System App Implements signature checks for various
file system tasks like file opening.

Gallery2 Media Viewer Implements signature checks, significant
changes to ensure everything is working
with the signature system.

HTMLViewer HTML Viewer Implements check for signatures when
opening files.

MtkBrowser Browser Implements signature checks for
downloaded and opened files (include
file:/// URLs).

Music Music Player Implements signature checks.

SoundRecorder Sound Recorder Implements adding signatures to
recorded audio files.

DownloadProvider System App Implements signature checks.

Reveal - Code Section 17

ExternalStorageProvider System App Implements signature checks.

Settings System App Various changes that disable features
like direct WiFi or USB option access.

SystemUI System App Implements signature checks.

One particularly interesting example for modified apps is the Settings app. Various
changes are described in section Settings.apk.

Stock Image Content
Besides the apps it allows to also identify all the other files that might be identical
on the stock image. These include e.g., configuration files or data that is preinstalled
for system applications. All of the files that are identical have been excluded from
the analysis.

The following table shows the apps that have not been modified:

Name Category

BasicDreams BasicDreams

CalendarImporter System App

DeskClock System App

DocumentsUI System App

DownloadProviderUI System App

DrmProvider System App

KeyChain System App

LiveWallpapers System App

MtkCalendar Calendar

MusicFX System App

Settings System App

PacProcessor System App

Reveal - Code Section 18

PhotoTable System App

UserDictionaryProvider

BackupRestoreConfirmation System App

CalendarProvider System App

CarrierConfig System App

DefaultContainerService System App

Besides the apps that are available on either the North Korean devices dumps or
the stock image, various core parts of the Android operating system have been
analyzed. The observations are discussed in the following section.

DIFFERENCES IN ANDROID VERSIONS

Over the past years we’ve seen devices with different Android versions. In this
section we are discussing potential differences in these versions. We focus on
everything related to North Korean software implementations rather than the stock
operating system.

The first devices we’ve analyzed in the past, including smartphones and tablet
PCs, were all based on the same AllWinner architecture running (almost) the same
Android Version 4.x. Even devices (that we know of) that were made in ~2017 were
running this version (e.g., the Ryongaksan tablet PC). Other devices, from other
vendors, then introduced MediaTek-based platforms, with newer Android versions.

Devices/Vendors with AllWinner chips:
•	 Woolim
•	 Ryongaksan
•	 “Achim” tablet from 2017

Devices/Vendors with MediaTek chips:
•	 Pyongyangphone 2406/2407
•	 Pyongyangphone 2425
•	 Taeyang 8321 tablet PC

LIMITATIONS BASED ON THE PLATFORM

The used AllWinner chips limited the supported Android versions mostly to
Android 4. Based on the devices we’ve analyzed over the course of multiple years;
this affects devices from 2013/2014 up to devices that were released in 2017 (it
may even affect newer devices we’ve not encountered so far). However, in the year
2017 Android 8 was released, so the North Korean devices that were based on the
AllWinner SoCs were shipped with obsolete Android versions for most of their
selling time.

Reveal - Code Section 19

MediaTek-based chips we encountered in North Korean devices did not come with
the same limitations as the AllWinner SoCs. Therefore, these devices were already
shipped with newer versions of Android. It is typically not the latest version available
on conventional phones outside of North Korea, but it is not too far behind. The
newer phones like Pyongyang come with Android 8 or even Android 9 already.

So generally, it is assumed that the old Android versions are not a result of a decision
by the North Korean developers to use these. These are rather the consequences
of relying on cheapproducts from vendors that come with these limitations by
default. The problem is then most likely that the developers cannot use newer
Android versions even if they intend to do so.

The only way to ship devices with newer versions is to switch to other platforms,
like some vendors did with the MediaTek chips. This trend will most likely continue
in the future, as most of the newer known devices are all based on MediaTek chips.

OS FEATURE UTILIZATION IN NEWER ANDROID VERSIONS

This section highlights added or improved measures on the most recent
implementation we’ve analyzed (Taeyang 8321).

TAEYANG BROWSER CHECK

On Woolim it was possible to bypass the signature system just by using apps that
allowed to view media files but did not implement signature checks. One example
was the default Android browser, which allowed you to view media files via file:///
URLs. Due to the older Android version on Woolim, it was possible to access files
from an external SD card via these URLs. However, in Taeyang this is not possible
anymore. The following code shows the loadUrl() function, that checks if the
signature system should be enabled, and if so, checks if the URL isn’t a http:///…
URL:

public void loadUrl(String checkAndTrimUrl, final Map<String, String> map){

	 if (SystemProperties.get(“ro.nation.sign”).equals(“1”) &&

			 !URLUtil.isNetworkUrl(checkAndTrimUrl)){	

		 Toast.makeText(this.mContext, 2131493014, 0).show();

		 return;

	 }

	 […]

}

This prevents using file:/// URLs in the default Android browser. Additionally,
when downloading a file, the browser now also implements a signature check
during the download process:

Reveal - Code Section 20

public static void onDownloadStartNoStream(Activity activity, String s, String s1, String

s2, String s3, String s4, boolean flag, long l){

	 mDownloadCompleteReceiver = new BroadcastReceiver(){

		 public void onReceive(Context context, Intent intent){

			 if(SystemProperties.get(“ro.nation.sign”).equals(“1”) &&

		 Interface.isLegalFile(DownloadHandler._2D_get0()) != 1)

			 (new File(DownloadHandler._2D_get0())).delete();

		 }

	 };

	 […]

}

This not only prevents loading of non-signed files from the local storage or external
SD cards, but also when they are downloaded from any website. This becomes
more relevant with projects like the Mirae WiFi Access, where tablet PCs and
other devices will be interconnected in the future. In these scenarios files could be
shared not only via peer-to-peer connections like Bluetooth, but also by universally
accessible systems on this WiFi network via services like web servers.

IMPLEMENTING FEATURES IN ART

Android KitKat 4.4 introduced a new runtime as an alternative to Dalvik6 in 2013.
The new Android Runtime (ART) is the default runtime since Android Lollipop 5.0
(2014) and it uses ahead-of-time compilation. The advantage compared to the
previous runtime is that there is a central implementation of the core Android APIs
that can be used by all apps on a device. This was not used in older devices like
Woolim (although the Android version would have it available), but is actually used
on Taeyang.

Typically, every app that should do signature checks, e. g., an image/video viewer
or text editor, had to implement the signature checks on older devices like Woolim.
Each of these apps had to implement calls to functions from native libraries that
checked the signatures. These libraries came preinstalled on these devices and
were called libmedianatsign.so and libmediaselfsign.so. On newer devices
like the Taeyang 8321, which uses ART, these checks are implemented in boot.oat
(/system/framework/arm/boot.oat). The explicit signature checks still use the
previous native libraries but with simpler interfaces. Additional implicit measures
are implemented by intercepting API calls. This new implementation is way more
effective than the previous implementations, because it is more convenient to
implement and is harder to bypass. It allows to implement checks at a lower level
in the core Android APIs without the calling app noticing it. There is also no way for
the apps to prevent these implicit checks if they rely on the core APIs.

6 https://en.wikipedia.org/wiki/Dalvik_(software)

Reveal - Code Section 21

This is also a common way of implementing rootkits on Android7. It is assumed that
the implementation is based on the same or similar research. The intended goal is
also comparable to a rootkit as the custom features try to monitor and also prevent
a user’s actions.

Apps that implement the newer version of the signature system load the com.
Legal.Java.Interface in the Java code and call a function called isLegalFile().
Anything related to libmedianatsign.so and libmediaselfsign.so then
happens transparently in ART. The actual code that is executed is very similar to
the older (explicit) implementations. However, they are not implemented in every
app that does signature checks but in a central place where the core APIs are
implemented.

The following list includes apps that use this new signature system interface on the
Taeyang tablet:

•	 SoundRecorder.apk
•	 Gallery2.apk
•	 Music.apk
•	 HTMLViewer.apk
•	 FileManager.apk
•	 MtkBrowser.apk
•	 Bluetooth.apk
•	 Camera.apk
•	 AdobeReader.apk
•	 OceanKingOffice12.apk
•	 SystemUI.apk
•	 DownloadProvider.apk
•	 PackageInstaller.apk

The following code snippet shows an example how the signature check is
implemented in the PackageInstaller app. This is a default Android system app that
installs APK files.

[...]

if (SystemProperties.get(“ro.nation.sign”).equals(“1”)) {

int var2 = Interface.isApkLegalFile(this.mPackageURI.getPath());

Log.d(“PackageInstaller”, “PackageInstaller -- isApkLegalFile onClick

result = “ + var2);

if (var2 != 1) {

this.showDialogInner(7);

this.finish();

return;

}

Log.d(“PackageInstaller”, “PackageInstaller -- isApkLegalFile onClick sign

complete!”);

}

[...]

7 https://securityintelligence.com/hiding-behind-android-runtime/

Reveal - Code Section 22

The code first checks the ro.nation.sign property, which is located in the build.
prop file. This is a property switch that allows to enable or disable the signature
checks in various apps. However, it does not allow to fully disable the signature
system because it is up to each app to check this property. Not all apps or other
custom code outside of apps of the signature system implement such checks. This
especially applies to implicit signature checks in the core API implementations.

If the signature checks are enabled, it continues to call the isApkLegalFile()
function. This is part of the actual signature system that handles all the signature
checks and file validation.

The checks shown above are implemented in the PackageInstaller’s onCreate() and
onClick() functions. These are called when an instance of the PackageInstaller is
created and also every time the app installation process is triggered. This happens,
e.g., when a user tries to open an APK file.

ART is located in a file called boot.oat which can be converted to DEX (oat2dex8)
files. The implementation is then available in the two framework files framework.
dex and framework-classes2.dex. Anything related to the signature system is
implemented in the latter.

For further analysis, the DEX files have been converted to JAR files via dex2jar9.

FRAMEWORK-CLASSES2.JAR

This contains the central implementation of the signature system interfaces. These
are just the external interfaces that should be used in the Java code of all the apps.
The actual core of the signature system is implemented in native libraries (see
section Signature System Core).

The following image shows the structure of these files with all the relevant interfaces
in the com.Legal and gov.no.media classes.

8 https://github.com/testwhat/SmaliEx
9 https://github.com/pxb1988/dex2jar

Reveal - Code Section 23

The main interface that is exposed to and used by all the apps is implemented in
com.Legal.Java. It provides mostly the same functions as the previous versions
of the signature system did in the per-app implementations. This is basically a
frontend for the gov.no.media.* classes and an additional new interface go.no.
media.Sign. It provides the following functions:

•	 checkMMSFile()
•	 generateTempApk()
•	 getLegalInfoSize()
•	 isApkLegalFile()
•	 isLegalFile()
•	 isMMSFile()
•	 isMagicCorrect()
•	 isMtpFile()
•	 isOtgFile()
•	 isTempApkFile()
•	 isVcfFile()
•	 isVcsFile()
•	 isVideoLegalFile()
•	 saveLegalFile()
•	 setMMSFile()

Reveal - Code Section 24

Anything in the gov.no.media.natsign.MnsNative and gov.no.media.
selfsign.MssNative packages is implemented via JNI10 in native functions11. This
is similar to the previous versions of the signature system.

Compared to the older versions of the signature systems it adds the com.Legal.
Lib.LegalInterface class which uses libLegalInterface.so as an additional native
library. The following JNI functions are provided by the LegalInterface:

package com.Legal.Lib;

public class LegalInterface

{

	 static {
		
		 System.loadLibrary(“LegalInterface”);

	 }

	 public static native int checkLegalFile(final String p0);

	 public static native int generateTempApk(final String p0, final String p1,
final String p2);

	 public static native int getLegalInfoSize(final String p0);

	 public static native int isLegalFile(final String p0);

	 public static native int isMagic(final String p0);

	 public static native int isSended(final String p0);

	 public static native int isTempApkFile(final String p0, final String p1);

	 public static native int saveLegalFile(final String p0);

	 public static native int setMMSInfo(final String p0);

}

The actual implementation of these functions is located in the native library
libLegalInterface.so.

This might be the new implementation of the signature system and the successor
to the previous libmedia* libraries. However, all of the analyzed apps still use the
older implementation, which might be due to compatibility reasons. This is similar
to support for the Red Star OS watermark implementation that is also available on
the tablet PCs. The reason is most likely to be compatible with various different
versions of the North Korean controlling mechanisms.

10 https://en.wikipedia.org/wiki/Java_Native_Interface
11 https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html

Reveal - Code Section 25

FRAMEWORK.JAR

This is the place where the Android APIs are implemented. This has been decompiled
and compared to a decompiled version of the stock image (see section TODO). The
key parts are the ones that use the interfaces provided by the previously described
framework-classes2.jar. Any occurence of these interface calls has been
added to implement signature checks and adding signatures to files for various
core functionality (taking photos, creating documents, etc.).

Besides integration of the signature system, various other changes have been
observed. These often disable default Android functionality to prevent users from
changing certain configurations or use builtin features. The following example
shows one small change in the WifiEnterpriseConfig class, where the password
string has been removed from the toString() function:

The left side shows the implementation in Taeyang and the implementation on
the stock image on the right. This function is meant to show the Enterprise WiFi
configuration as a string. The default implementation on the stock image just adds
all available fields, including the configured password. However, Taeyang explicitly
removes the password field so that it is not visible to the user.

The following section describes one major change in the Android API: adding
signature checks to MTP, which is implemented in this framework file.

SIGNATURE CHECKS IN MEDIA TRANSFER PROTOCOL (MTP)
MTP is a USB mode in Android that allows the transfer of data between devices12.
It is used when connecting an Android device to a computer to copy data to/from
devices. Typically, this mode has to be activated on the device, but devices may
choose to use it as the default mode when plugging in a USB cable.

MTP does not open any files, it just transfers them from one device to another.
However, on Taeyang the core implementation android.mtp.MtpDatabase
in the ART has been modified to do signature checks. The following function
getObjectFilePath() from the MTP implementation shows some parts of the
added code, which checks if the given filename has a valid signature:

12 https://developer.android.com/reference/android/mtp/package-summary

Reveal - Code Section 26

private int getObjectFilePath(final int n, final char[] array, final long[] array2) {
	

Log.d(“MtpDatabase”, “getObjectFilePath handle = “ + Integer.toHexString(n));

[…]

switch (Interface.isLegalFile(string)) {

	 case 3: {

		 cursor2 = query;

		 cursor = query;

		 this.deleteIllegalFile(this.mContext, string);

		 break;

}

[…]

}

In case the file does not have a valid signature, it will immediately be deleted from
the device instead of just printing a warning message. This is different from older
implementations we’ve analyzed like the Woolim tablet PC. On those devices files
won’t be deleted, the apps will just refuse to open them.

Reveal - Code Section 27

CUSTOM APP ANALYSIS

This section briefly describes the analysis of some interesting apps of Taeyang.
These are implemented by North Korean developers and are not just copied from
stock images.

OCEAN_LAUNCHER-V02_NOAPP_Q8H.APK

This is a central app that is pre-installed on the Taeyang tablet. It has some very
interesting implementation properties. One feature is the implementation of a
check for the use of wallpaper. The implementation of the features is somehow
hidden in a file called wall.jpg which is part of the resources in the APK file.
Based on the location (resources/raw) and filename it seems like the developers
intended to hide the fact that this is actually a native library which is loaded by the
following function:

private void loadLibrary() {

	 try {

InputStream var1 = this.mContext.getResources().
openRawResource(2131099649);

byte[] var2 = new byte[var1.available()];

var1.read(var2);

Context var3 = this.mContext;

Context var4 = this.mContext;

FileOutputStream var6 = var3.openFileOutput(“wall.dat”, 0);

var6.write(var2);

var6.close();

var1.close();

System.load(this.mContext.getFilesDir().getAbsolutePath() + “/wall.
dat”);

	 } catch (Exception var5) {

		 var5.printStackTrace();

	 }

}

Reveal - Code Section 28

This function copies wall.jpg into wall.dat and loads it via System.load(). This
will then make the following JNI functions available in the app:

•	 Java_com_padandroid_aplus_service_AplusServiceManager_
setLicense()

		 ° Gets data via function arguments and initializes a buffer with it.

•	 Java_com_padandroid_aplus_service_AplusServiceManager_
loadStamp()

° Calls have_license(), which just checks if the initialized buffer contains
some given strings. Compare it to data from stamp.png file from
resources.
° Bitmap must be 320x200 and has to have a specific format set in the
image header. No fancy checks, pretty simple.

These functions are used in a so-called “Aplus Service” (com.padandroid.aplus)
which is implemented in the Java code of the app. This service seems to check
the given image file when the wallpaper is changed. In case it does not meet
the requirements in the checking functions, the device will refuse to change the
wallpaper.

